Effect of Morphology of Calcium Carbonate on Toughness Behavior and Thermal Stability of Epoxy-Based Composites
Published: |
October 14, 2020 |
Author: |
Guijun Yang, Young-Jung Heo and Soo-Jin Park |
Abstract: |
In this study, the modification of an epoxy matrix with different amounts of cube-like and rod-like CaCO3 nanoparticles was investigated. The effects of variations in the morphology of CaCO3 on the mechanical properties and thermal stability of the CaCO3/epoxy composites were studied. The rod-like CaCO3/epoxy composites (EP-rod) showed a higher degradation temperature (4.5 _C) than neat epoxy. The results showed that the mechanical properties, such as the flexural strength, flexural modulus, and fracture toughness of the epoxy composites with CaCO3 were enhanced by the addition of cube-like and rod-like CaCO3 nanoparticles. Moreover, the mechanical properties of the composites were enhanced by increasing the amount of CaCO3 added but decreased when the filler content reached 2%. The fracture toughness Kic and fracture energy release rate Gic of cube-like and rod-like CaCO3/epoxy composites (0.85/0.74 MPa m1/2 and 318.7/229.5 J m... |
You must be a registered user to talk back to us. |
Company Information:
More SMT / PCB assembly technical articles »
- Apr 11, 2022 - iNEMI Webinar 07.07.2021 - PCB Cleaning | ZESTRON Americas
- Jan 28, 2022 - Open Radio Unit White Box 5G | Whizz Systems
- Nov 10, 2021 - Understanding the Cleaning Process for Automatic Stencil Printers | ITW EAE
- Oct 20, 2021 - PCB Surface Finishes & The Cleaning Process - A Compatibility Study | ZESTRON Americas
- Oct 06, 2021 - Cleaning Before Conformal Coating | ZESTRON Americas
- Browse Technical Library »
Effect of Morphology of Calcium Carbonate on Toughness Behavior and Thermal Stability of Epoxy-Based Composites article has been viewed 334 times